Some numerical experiments with variable-storage quasi-Newton algorithms

نویسندگان

  • Jean Charles Gilbert
  • Claude Lemaréchal
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined conjugate-gradient quasi-Newton minimization algorithm

Although quasi-Newton algorithms generally converge in fewer iterations than conjugate gradient algorithms, they have the disadvantage of requiring substantially more storage. An algorithm will be described which uses an intermediate (and variable) amount of storage and which demonstrates convergence which is also intermediate, that is, generally better than that observed for conjugate gradient...

متن کامل

Updating Quasi - Newton Matrices With Limited Storage By Jorge Nocedal

We study how to use the BFGS quasi-Newton matrices to precondition minimization methods for problems where the storage is critical. We give an update formula which generates matrices using information from the last m iterations, where m is any number supplied by the user. The quasi-Newton matrix is updated at every iteration by dropping the oldest information and replacing it by the newest info...

متن کامل

Fast Numerical Algorithms for the Computation of Invariant Tori in Hamiltonian Systems

In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functio...

متن کامل

Convergence of quasi-Newton matrices generated by the symmetric rank one update

Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence ...

متن کامل

Solving Nonlinear Systems of Equations by Means of Quasi-newton Methods with a Nonmonotone Strategy 1

A nonmonotone strategy for solving nonlinear systems of equations is introduced. The idea consists of combining eecient local methods with an algorithm that reduces monotonically the squared norm of the system in a proper way. The local methods used are Newton's method and two quasi-Newton algorithms. Global iterations are based on recently introduced box-constrained minimization algorithms. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1989